US009063658B2

a2 United States Patent
Resch

US 9,063,658 B2
*Jun. 23, 2015

(10) Patent No.:
(45) Date of Patent:

(54) DISTRIBUTED STORAGE NETWORK FOR
MODIFICATION OF A DATA OBJECT

(71) Applicant: CLEVERSAFE, INC., Chicago, I,

Us)

(72) Inventor: Jason K. Resch, Chicago, IL. (US)
(73)

")

Assignee: Cleversafe, Inc., Chicago, IL. (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.
2D 14/288,453

(22)

Appl. No.:

Filed: May 28, 2014

(65) Prior Publication Data

US 2014/0280681 A1l Sep. 18, 2014
Related U.S. Application Data

Continuation of application No. 14/132,020, filed on
Dec. 18, 2013, which is a continuation of application
No. 13/932,320, filed on Jul. 1, 2013, now Pat. No.
8,631,303, which is a continuation of application No.
12/839,197, filed on Jul. 19, 2010, now Pat. No.
8,479,078.

Provisional application No. 61/256,436, filed on Oct.
30, 2009.

(63)

(60)

Int. Cl1.
G11C 29/00
GO6F 3/06
GO6F 11/10
HO4L 29/08
U.S. CL
CPC

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)
............ GOGF 3/061 (2013.01); GOGF 11/1076

(2013.01); GO6F 2211/1028 (2013.01); GO6F

1171092 (2013.01); HO4L 67/1097 (2013.01)

(58) Field of Classification Search
CPC . GO6F 11/1076; GOGF 3/061; GOG6F 11/1092;
GOG6F 2211/1028; GOGF 11/10; GOGF 9/445,
HO04L 67/1097;, HO4L 9/3247;, HO4L 2209/30;
HO3M 7/30
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,092,732 A 5/1978 Ouchi
5,454,101 A 9/1995 Mackay et al.
(Continued)
OTHER PUBLICATIONS

Shamir; How to Share a Secret; Communications of the ACM; vol.
22, No. 11; Nov. 1979; pp. 612-613.

(Continued)

Primary Examiner — Guerrier Merant
(74) Attorney, Agent, or Firm — Garlick & Markison;
Timothy W. Markison

(57) ABSTRACT

In a dispersed storage network, data objects are dispersed
storage error encoded into pluralities of sets of encoded data
slices that are stored in a set of storage units. To recover a data
object, a read threshold number of encoded data slices from
each set of encoded data slices of a corresponding set of the
plurality of sets of encoded data slices are required. Upon
determining that an update is available for the set of storage
units, a dispersed storage managing unit takes a first subset of
storage units off line to perform the update. During the
update, a remaining number of storage units of the set of
storage units remain on line such that at least the read thresh-
old number of encoded data slices are available for each set of
the pluralities of sets of encoded data slices.

20 Claims, 11 Drawing Sheets

user device 12

DS processing unit 16

data object 40

computing core 26

computing core 26

D5 processing 34

user device 14

computing
core 26

DS
processing 34

DSN interface 32 interface 30 |

interface 30

DSN interface 32
*0e

Data Segmentl 42a

- 1
Data SegmentY 42n

ECslice 1_144a ECslice Y_146a

| 1 | i
1) 1 i
I ! I !
! b =1
i
. 1 . |
ol slices 11 I | H 1000, H |
RN S DS N N
I [Ecslice 1 xaan] ! I [Ecslice v_x46n] !
F N e — i [So—— i
network 24 -
slices 48 — interface 38
o0e b
core 26
EC slice 1_1 4da EC slice 1_X 44n 05 managing
DSN interface 32 I .se I X unit 18
ECslice Y_146a EC slice Y_X 46n
computing ittt - -
core 26 : LI }
| DS unit 36 DSunit3s | |
storage integrity 1 | ti term 10
N d N puting system 10
processing unit 20 : dispersed storage network (DSN) memory 22 } Computing sys!

US 9,063,658 B2
Page 2

(56)

5,485,474
5,774,643
5,802,364
5,809,285
5,890,156
5,987,622
5,991,414
6,012,159
6,058,454
6,128,277
6,175,571
6,192,472
6,256,688
6,272,658
6,301,604
6,356,949
6,366,995
6,374,336
6,415,373
6,418,539
6,449,688
6,567,948
6,571,282
6,609,223
6,718,361
6,760,808
6,785,768
6,785,783
6,826,711
6,879,596
7,003,688
7,024,451
7,024,609
7,080,101
7,103,824
7,103,915
7,111,115
7,140,044
7,146,644
7,171,493
7,222,133
7,240,236
7,272,613
7,636,724
2002/0062422
2002/0166079
2003/0018927
2003/0037261
2003/0065617
2003/0084020
2004/0024963
2004/0122917
2004/0215998
2004/0228493
2005/0100022
2005/0114594
2005/0125593
2005/0131993
2005/0132070
2005/0144382
2005/0229069
2006/0047907
2006/0136448
2006/0156059
2006/0224603
2007/0079081

References Cited

U.S. PATENT DOCUMENTS

b g g S

1/1996
6/1998
9/1998
9/1998
3/1999
11/1999
11/1999
1/2000
5/2000
10/2000
1/2001
2/2001
7/2001
8/2001
10/2001
3/2002
4/2002
4/2002
7/2002
7/2002
9/2002
5/2003
5/2003
8/2003
4/2004
7/2004
8/2004
8/2004
11/2004
4/2005
2/2006
4/2006
4/2006
7/2006
9/2006
9/2006
9/2006
11/2006
12/2006
1/2007
5/2007
7/2007
9/2007
12/2009
5/2002
11/2002
1/2003
2/2003
4/2003
5/2003
2/2004
6/2004
10/2004
11/2004
5/2005
5/2005
6/2005
6/2005
6/2005
6/2005
10/2005
3/2006
6/2006
7/2006
10/2006
4/2007

Rabin

Lubbers et al.
Senator et al.
Hilland
Rekieta et al.
Lo Verso et al.
Garay et al.
Fischer et al.
Gerlach et al.
Bruck et al.
Haddock et al.
Garay et al.
Suetaka et al.
Steele et al.
Nojima
Katsandres et al.
Vilkov et al.
Peters et al.
Peters et al.
Walker

Peters et al.
Steele et al.
Bowman-Amuah
Wolfgang
Basani et al.
Peters et al.
Peters et al.
Buckland
Moulton et al.
Dooply
Pittelkow et al.
Jorgenson
Wolfgang et al.
Watson et al.
Halford
Redlich et al.
Peters et al.
Redlich et al.
Redlich et al.
Shu et al.
Raipurkar et al.
Cutts et al.
Sim et al.

de la Torre et al.

Butterworth et al.

Ulrich et al.
Gadir et al.
Meffert et al.
Watkins et al.
Shu

Talagala et al.
Menon et al.
Buxton et al.
Ma et al.
Ramprashad
Corbett et al.
Karpoff et al.
Fatula, Jr.
Redlich et al.
Schmisseur
Hassner
Shiga et al.
Cialini et al.
Kitamura
Correll, Ir.
Gladwin et al.

2007/0079082 Al 4/2007 Gladwin et al.
2007/0079083 Al 4/2007 Gladwin et al.
2007/0088970 Al 4/2007 Buxton et al.
2007/0174192 Al 7/2007 Gladwin et al.
2007/0214285 Al 9/2007 Auetal.
2007/0234110 Al 10/2007 Soran et al.
2007/0283167 Al 12/2007 Venters, III et al.
2009/0094251 Al 4/2009 Gladwin et al.
2009/0094318 Al 4/2009 Gladwin et al.
2010/0023524 Al 1/2010 Gladwin et al.
2014/0281804 Al* 9/2014 Resch ..o 714/763

OTHER PUBLICATIONS

Rabin; Efficient Dispersal of Information for Security, Load Balanc-
ing, and Fault Tolerance; Journal of the Association for Computer
Machinery; vol. 36, No. 2; Apr. 1989; pp. 335-348.

Chung; An Automatic Data Segmentation Method for 3D Measured
Data Points; National Taiwan University; pp. 1-8; 1998.

Plank, T1: Erasure Codes for Storage Applications; FAST2005, 4th
Usenix Conference on File Storage Technologies; Dec. 13-16, 2005;
pp. 1-74.

Wildi; Java iSCSi Initiator; Master Thesis; Department of Computer
and Information Science, University of Konstanz; Feb. 2007; 60 pgs.
Legg; Lightweight Directory Access Protocol (LDAP): Syntaxes and
Matching Rules; IETF Network Working Group; RFC 4517, Jun.
2006, pp. 1-50.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Interna-
tionalized String Preparation; IETF Network Working Group; RFC
4518; Jun. 2006; pp. 1-14.

Smith; Lightweight Directory Access Protocol (LDAP): Uniform
Resource Locator; IETF Network Working Group; RFC 4516, Jun.
2006; pp. 1-15.

Smith; Lightweight Directory Access Protocol (LDAP): String Rep-
resentation of Search Filters; IETF Network Working Group; RFC
4515; Jun. 2006; pp. 1-12.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Directory
Information Models; IETF Network Working Group; RFC 4512; Jun.
2006; pp. 1-49.

Sciberras; Lightweight Directory Access Protocol (LDAP): Schema
for User Applications; IETF Network Working Group; RFC 4519,
Jun. 2006; pp. 1-33.

Harrison; Lightweight Directory Access Protocol (LDAP): Authen-
tication Methods and Security Mechanisms; IETF Network Working
Group; RFC 4513; Jun. 2006; pp. 1-32.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Technical
Specification Road Map; IETF Network Working Group; RFC 4510,
Jun. 2006; pp. 1-8.

Zeilenga; Lightweight Directory Access Protocol (LDAP): String
Representation of Distinguished Names; IETF Network Working
Group; RFC 4514; Jun. 2006; pp. 1-15.

Sermersheim; Lightweight Directory Access Protocol (LDAP): The
Protocol; IETF Network Working Group; RFC 4511; Jun. 2006; pp.
1-68.

Satran, et al.; Internet Small Computer Systems Interface (iSCSI);
IETF Network Working Group; RFC 3720; Apr. 2004; pp. 1-257.
Xin, et al.; Evaluation of Distributed Recovery in Large-Scale Stor-
age Systems; 13th IEEE International Symposium on High Perfor-
mance Distributed Computing; Jun. 2004; pp. 172-181.
Kubiatowicz, et al.; OceanStore: An Architecture for Global-Scale
Persistent Storage; Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.

* cited by examiner

US 9,063,658 B2

Sheet 1 of 11

Jun. 23, 2015

U.S. Patent

0T Wo3sAs sunndwod

T 'Ol

8T Hun
8ui8euew

Sa

gz 2402

Sunndwon

€ 20BlaIUI |

0T Hun Buissasoud
Aj48a1u1 98eu01s

UG X ASDNSDT | A BT T A 921|503
[X 1]

Upp X To0s03 |y BpF T T 991503

0€ 2oela1ul |€

\4

¥Z yaomisu

gg 2400
guiindwo?d

TE 9deua1ul NS

3 A

- 8Y saoIIs

TT s321|s

Q¢ 2402
Suindwoo

T 201A8p Jasn

0% 19lqo eiep

> 0F avepaqul | | 7€ 2oepatul Nsa |
3 i

_ < 8uissanoud sg _

97 2402 Suinndwod

9T 1un uissasoud s

ZE 9oea1uUl NSQ

A

A 4
€ 8uissasoud
sa

9z 2402 Suiindwod

T @2IAap Jasn

US 9,063,658 B2

Sheet 2 of 11

Jun. 23,2015

U.S. Patent

|
|
|
9/ 3|hpow vZ anpow 7L 3|npow asea1ul 0L 3npow 89 9|npow 99 a|npow |
909Ul NS d0kJIDIUI OH ysey 30BLID1UI 3J0MIBU 92eJ491Ul YGH oe21Ul gSN _
Y A A A _
| |
| i) i) |
| |
+ |
“ YV YYY !
| |
! 8S 906491l |Dd 79 5014 |
| |
| A WOX |
| 4 |
| |
| y A 4 —_— |
| — — 79 3|npow _
I G 19]|0J1u0D 09 9cepaul |
< » 2oBHIDIUI
! ol ol _
" 32IA3P O I
|
| 1 |
| |
| r |
— —_— — |
" pSAowsw | | ZGa9|onuod | 0G 3|npow I
| ulew i Alowaw 7| 8uissadcoud _
| |
| |
| |
| 4 |
| |
| |
| |
| |
| |
| |
|

solyded

SG 1un 3uissanoud

3 oapIn

US 9,063,658 B2

Sheet 3 of 11

Jun. 23, 2015

U.S. Patent

UGy X A 92I|S BIEP PBPOI JOMD

aweu 0§

€D

B9y T A ©2I|S BIEP POPO2 JOIID

aweu 0§

Uy X T @21|S BIEP PapOD 0D

3Weu 01|§

aweu eleq | asas | uaBynep | arynea | xspuiaoys
21419305 uollewlopu] 8uinoy |esianiun
HneA ! } ! | |
7€ aweu 301§
ugy upy
XA 9IS e1ep O3 X T 921[s e1ep 33
awleu adl|s aweu al|s
® ®
® ®
[] []
17 soe E72
T A 9d1s elep D3 T T 921 e1ep 23
aweu adl|s aweu al|s
UZy Aluswigas eleqg BZY Tluswdas e1eqg

UZy Ausw3as eep

BZr TIuawdas eyep

0 13lqo elep

GE 9WEU 22JN0S

G¢€ aWeu a2unosg

al a4 _ Asal _ uag ynep | aiynea

T aWeU a2Inog

| 7€ e0epauinsa |

N\

_ 78 s|npow oJel01s _

Z8 s|jnpow puld

08 2|npow ssadde _
A

\ 4
87 s|npow Aemaled

Interface 30

F¥E s|npow duissadoud sg

BPY T T 92I|S BIEP POPOD JOLID

P aweu 0|5

0v 13lqo
elep

] sweu
13[q0

98l
SEN)

>
[—>

US 9,063,658 B2

Sheet 4 of 11

Jun. 23, 2015

U.S. Patent

| xoouseepos |

¥ 90lIs e1ep 03

€ 92I|s e1ep 13

¢ 32s E1EP 33

T 9015 e1ep D3

_Hmn__Rn__mNn__mE_mE_:n__Nn__mn__

_Omn__mwn__Nmn__wﬂn_in_oﬁn__mn__Nn__

_mwn__mwn_:n__:n_mﬁ_mo__mn__ﬁn_

_wmn__ﬁn__oNn__Sn__NHn__wn__vn__on__

[“q |eee|q]|q |00]| eee Eooo_ g [g |eee | o |

68 Jo1eindiuew

N

7 Ja21|s

A

T6 1uaW8as e1ep papodus Jo SHY 7§

Z8 s|hpow pug

-ap adl|s-150d

e T

Tg Jolgindiuew

Zg 1901|5-3p

€g Jojendiuew

GQ 1Spodap [«

-9p 921|5-04d

€7 1un [0J1U0d

pIingsJ

201|s-150d

_ T 291Is e1ep D3 _

A 4

N

JBERH

_
_
77 19poous ¥

G/7 Jole|ndiuew

901|s-9.d

$6 uswgas elep papoous _ _ 7% Wawsas eyep

US 9,063,658 B2

Sheet 5 of 11

Jun. 23, 2015

U.S. Patent

L 3y
0 8 80lIs
L 8l
J0 S 8IS
L old
FEFAS
} 3L

j0§,| 8IS

4un aiun Olun viun
abeiols g abeiols g abelois g abeiois g
€ {elid ¢ {8l d | felid 04eld
7¢ Mowsw NSg

AR PRI p PRI

NBA Z# Jasn Jo Z 3|1

1NEBA g4 J3sn Jo T 9|l
\ 1Inea Z# Jasn
10} 8oeds

ssaippe NS [enHIA

Pronannnm:

i

Z 122(q0 e1eQ JO) T 9|1}

9Ol

I
_ — —_—
_ o vel }neA L#Jasn

ariun | Aowspy ool o
“ seos | nsg |0 boL0E I
|
_ 5 e di HNeA |# Jesn
| anun | Aowsyy | T BT
_ abeio)g NS 10 | 91140 ¢ Jellid
I
I
| 5 7ar di }neA L# Jesn
| ann | Aowsyy | U0 BT
| abeioig NSQ 10 L 3l1)0 | Jejlid
I
I
I
I
I
I
I —T

= PN e
| | ebeiog | nsg [*° P00l
I
I
I
— —
I ZFI elqes
| uoneso) [eaisAyd o1

$SSIPPE NSQ [enIA

nea L# Jasn
10} 9oedS

sSaJppe NSQ [ENHIA

AN

By eoeds
ssaippe NS [enuIA

)|
|
|
|
I

L# el

UZGT Alowsu
[ENMIA Ug 1SN

(oo[g/ell ‘Hnen)

alWeu 83in0g

L# ol

BZGl Alowall
[ENJIA |# 198N

US 9,063,658 B2

Sheet 6 of 11

Jun. 23, 2015

U.S. Patent

8 'Ol

JADIE
4 8¢¢ pPIad 4
p4 UOISIASY JUsW3as °
Z¢7 Agoiel F = T9zzppd ~ | —
cmOm_mScumu%m _ 2ZIS WCNmNEﬁm_w.m“_Smo _ TPl L
. M Dl hgihadit I d Jaquinp ploysaJyl
971S 199/q0 eleq 1uswgas e1eQ X JaqWinN .mu__m

962

juswgas eiep paipow e a3etausd
01 JUBWSEaS e1EP P31ONIISUOIDI 3YL AJIPOIA|

UOZZ NeA T# J9sn u3dalqQ eleq Joj u i

%

v

1UusWSas e1ep PaldNnJiIsuodIal
e 9onpoJd 0] S321|S B1Ep PAPOIUD JO
Alljean|d ay1 jo | JSqWINU 3Y3 1SE3| 1B WU
JusWEas elep PalIuUIPI Y} 19NJISU0IY

9

-
¢5e

uonedijipow
SuuinbaJ 103(qo e1ep ayi jo sjuawdas
e1ep 4o Alljesn|d ay3 4o suo AHIuap|

omm\

L]
[
[
u 8Z¢ pIdK
® UOISIASY JUBWdag
ZET pI3d Adarens ". 97T pIald JSUINN |
uoleluawsds
pelowdss | _uewssseeq |
0€T pI”4 {244 JCIE|

9215 193[qQ e1eQ 521§ Wawsag eleq

B0CC HNEA T# Jasn T123[qQ eleq Joy T 3]

T2 pI314 awayds

guipoou3 Josu3

|
L

OTc piaid _

| 80C PI3ld AJaquinNy

L

uswgdas paxi4 _

90¢ pIo
uoIleI3UD JneA

¥0¢ pIod
Ja11uap| Ynep

Z0¢ SJolsWeled
|[euoliesadQ

00¢ 1neA T#49sn

US 9,063,658 B2

Sheet 7 of 11

Jun. 23, 2015

U.S. Patent

01 "Slid

U8TeE PIal4 Uonedipon

ugte pleld
101e2IpU| UOINSOd

° 3
* 5
S p— 3
qat€ P12 =
SLE PISLIEOREIPON J01E31PU] UOINISOd &
B9TE P94
"L PIS HORERIPON J01B21PU| UOIYISOJ
$TE PI314 Y1dua peojhed g
9 o
f4%3 0T¢ _ _ g
piaid sweN | pai4 adAL m:m_wmm _o“_vw_w_ oom_mo._u.w_“_ 3
324Nn0S uolpesuel | N129:q0 | dldesn I

modification request 300

6 Ol

88¢

JUSWB3S eIEP PIIONJISUO0IDI
B 931BJ2U38 0} S| BIRP PIPOIUD
JO 1 Jaquinu p|oysaJyl e 1Sea| 3e wody
JUSWSaSs e1ep PaIJIIUSP! BY} IONIISU0IDY

A

96z~

JUSW8as eyep palIuapI
ue 91eJauad 01 sluswdas elep jo Ayjesnid
9Y1 JO $82Is JuawWdas pue Jojedipul
uoiisod ayj 03 asuodsaJ ul uoiiedijipow
8uinnbau 123[qo e1ep ay1 jo sjuswdas
e1ep jo Aljesn|d ay1 jo suc Alusp)

A

8¢

13[qo e1ep 3y} Jo sjuswSas ejep jo
Anjesnid ay1 jo az1s JUBWSESS e suUIWISIBQ

A

28e

uonediipow paisanbau
pue Jojedipul uoilisod e sapnjoul 1sanbaJs
uoned1JIPOW 3Y1 UIaJaym “123(qo eiep e
Ajipow 01 31s3nbaJ UOI1BDIHIPOW B BAISISY

08¢

US 9,063,658 B2

Sheet 8 of 11

Jun. 23, 2015

U.S. Patent

1uswdas

@@m\ B1EP P3IJIPOW 3Y3 JOJ P|3l} UOISIAS & 31epdn

yoe

1

Juswsas elep
paijpow ayi 4oy} plaly azis Juawdas e alepdn

» la

[4 5T

29¢

ese

0s¢e

>«

sjuswWdas elep pajsnipe Jo Jaquinu e o1
asuodsaJ u| pjaly Jaquinu Jusawdss e alepdn

Z f

9ZIS JUBWESS paJIsap e dARY sjuswdes
B1EP P3IHPOW PIPIAIP DY} UISIYM ‘SIUIWEDS
B1EP PalIPOW PApIAIR SJOW JO OM] 31BJIauUas
0} Juawsas eyep payipow ayy Suipialg

9zIs
Juawsas elep paJisap
e uielqo o} chEmwm
elep payipow ay}
03 591Aq SuIynIs ppy

09¢ -

Loz1s

A
mmm.\

8e0.J9p
0] poeN

{PRIHIPON
azIs Juswbag

121

paJayje st Juswdas
BlEp PaIONJIISU0I3J Y3 JO S31AG Jo Jaquinu
e ulaJaym uawdas elep palipow e ayelauas
01 1UBWSSS B1EP PAIONJISUOIDI BYL AJIPOIA

-/

T1 'Dld

el

JUsW3as e1ep paljpow
3Y3 Jo} p|3l4 uoisiaal e a1epdn

%

1444

juswW8Eas elep paiypow
2yl Joy p|al4 azis Juawdas e arepdn

%

cre

1uawsas elep paipow
e 9)esauad 03 1sanbaJ uolledipow
3Y1 YHM 2dUBpI0dde Ul JUSWES
BIEP Pa1oNJisucdal ayl AHpo

0¥t

US 9,063,658 B2

Sheet 9 of 11

Jun. 23, 2015

U.S. Patent

vl 'Ol

Sl 'Ol

8T pIsd
UoISIADY JUdWSag

75z A8a1ens
uoneluawgasg

0T pIald 3z1s
1uBW3as paxid4

0T p|ald 3z1s
123[qO eieg

17 JopesH uswdss eleq

0Ly

$301|S B1EP
papooua 1jIngaJ 3y} jo 3delols Joy
28essaw 1sanbaJ a3uMm 1WISURL |

%

80y

o8essaw
1sanbaJ 2114m 3onpoud 03 peojAed

pue Japeay |od03oJid 21eJ3UBD

1

90¥

921|s B1EP P3POIUS 1|INg3
yoea 4oy pjal} Yidus| aoifs pue
‘UoISIASJ D1|S ‘Dweu 01|s d1epdn

%

mumv_umn_ 921|S Ilelausn

14014

%

a0y

uolduny [estadsip ulpodus Joaud

ay3 duisn Juswdas elep palipow
91 WOoJ} S321|S BIEp POPOdIUd
ingaJ jo Alljean|d e s1elousn

00y

-/

€19l

T6E PIS14 peojhed 921|S

Z6€ pPI914 Yi8ua a221|s

06€ P34 uoIsIAY 221|S

88¢€ P9l SWEN 321|S

Slice Packet 384

UT8E
SENRERERII

coe qvse EV8E
19084 991IS | 393084 9IS

8¢ Jopesy
|0203044

DB aFessaln 1sonbay a1l

US 9,063,658 B2

Sheet 10 of 11

Jun. 23, 2015

U.S. Patent

AJowaw NS Ul
USWEIS B1EP PSIIUSPI SYT JO SDN|S elep
91UMJISAC 0] JUSWIFIS elep Juswade|dad
10 $821|S elep JUBWa2e|daJ) LWwsuel |

*

1usw3as elep Juswsoe|dal
a3 1oy} p|a1y uoisial e 31epdn

*

juswW3gas ejep Juswade|dal oyl wody
$321|S e1ep D7 UswWIde|dad Jo Aljesn|d pue
1uswgas elep Juswode(dal e 31eIBUSD

i paoe(day

_

1144

uowgas
elEp Palipow e 31etauad o] Juswsas
» e1Ep Pal1onJisuodal oyl AJIpon
0S¥)

_

SOEWEES rA44

e1ep pajonJisuodal e aanpoud ol
S321|S e3ep papodua jo Ayjeln|d ay3 jo
_A 1J9qunu aylised| 1e wouj Juswdas »
147
B1ep PalJIIUaP! Byl 19NIISU0IY 047
7}
N
9l 9Ol

A

acy
>y

yey

-/

ocy p

A%

Juswbag eleQ

197

1uswgas elep
paljiluspl ue o1eiouUS3 03 SIUSWSIS elep Jo
Aljean|d sy Jo 3zis JUSWEas pue JoledIpul
uollisod syi 031 asuodsal ul sJuswdas
e1ep 4o AljeJn|d ay3 jo suo Ajllusp|

*

103[qo e1ep ay) jo spuawsas eyep jo
Ayjednid ayi Jo az1s JUsWSS B BUIWISISQ

*

uolledlyipow paisanbal
pue Joiesipul uoilisod e sapnjaul 1senbau
uol1ealjipolw ayl uiaJaym “}oafqo eiep e
Ajlpow 01 153nbaJ UCIIRIIJIPOLW B 3AIRI3Y

US 9,063,658 B2

Sheet 11 of 11

Jun. 23, 2015

U.S. Patent

024

81 'O

125

Helsad pue mun__‘_um unJ

1

A3

9JBMIJOS MU |[BISUI

i

0£g

9JEM1JOS MBU PEO|UMOP

9

8cs

s9s553004d puadsns

9

9cs

3|qe|leAeun 03 snjels agueyd

FETNERERN

a5~

paAIsdas 98essaw jual|d a1epdn
$59004d 91BAIIIE JBYIIYM SUIWIII3Q]

A

00G

als

0LS

L1914

1UBW|D Wo1sAs 01 a8essaw
__A 1ua1 s1epdn ssa00.d 91BAI0E JWsuel |

%

a1epdn aiemyos
—| [je1sul 01 JuBWB|E WalsAs BuUIWIBIaQ

diadinbay

80

o1epdn aJem1os saJinbau
USWI[3 WIISAS B JBYISYM BUIWIS1SQ

90§ -

é9|qe|leAy

d|qe|leae

A 4

sl alepdn 3J1eM1J0S JaY1aYM dUIWIB1Q

205 -

US 9,063,658 B2

1
DISTRIBUTED STORAGE NETWORK FOR
MODIFICATION OF A DATA OBJECT

CROSS-REFERENCE TO RELATED PATENTS

The present U.S. Utility patent application claims priority
pursuant to 35 U.S.C. §120, as a continuation of U.S. Utility
patent application Ser. No. 14/132,020, entitled “DISTRIB-
UTED STORAGE NETWORK FOR MODIFICATION OF
A DATA OBJECT?”, filed Dec. 18, 2013, now issued as U.S.
Pat. No. 8,914,707 on Dec. 16, 2014, which is a continuation
of U.S. Utility patent application Ser. No. 13/932,320,
entitled “DISTRIBUTED STORAGE NETWORK FOR
MODIFICATION OF A DATA OBJECT,” filed Jul. 1, 2013,
now issued as U.S. Pat. No. 8,631,303 on Jan. 14,2014, which
is a continuation of U.S. Utility patent application Ser. No.
12/839,197, entitled “DISTRIBUTED STORAGE NET-
WORK FOR MODIFICATION OF A DATA OBJECT,” filed
Jul. 19, 2010, now issued as U.S. Pat. No. 8,479,078 on Jul. 2,
2013, which claims priority pursuant to 35 U.S.C. §119(e) to
U.S. Provisional Patent Application No. 61/256,436 entitled
“DISTRIBUTED STORAGE NETWORK ACCESS,” filed
Oct. 30, 2009, all of which are hereby incorporated herein by
reference in their entirety and made part of the present U.S.
Utility patent application for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT DISC

Not applicable.
BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to computing systems and
more particularly to data storage within such computing sys-
tems.

2. Description of Related Art

This invention relates generally to computing systems and
more particularly to data storage solutions within such com-
puting systems.

DESCRIPTION OF RELATED ART

Computers are known to communicate, process, and store
data. Such computers range from wireless smart phones to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a comput-
ing system generates data and/or manipulates data from one
form into another. For instance, an image sensor of the com-
puting system generates raw picture data and using an image
compression program (e.g., JPEG, MPEG, etc.), the comput-
ing system manipulates the raw picture data into a standard-
ized compressed image.

With continued advances in processing speed and commu-
nication speed, computers are capable of processing real time
multimedia data for applications ranging from simple voice
communications to streaming high definition video. As such,
general-purpose information appliances are replacing pur-
pose-built communications devices (e.g., a telephone). For
example, smart phones can support telephony communica-
tions but they are also capable of text messaging and access-

10

15

20

25

30

35

40

45

50

55

60

2

ing the internet to perform functions including email, web
browsing, remote applications access, and media communi-
cations (e.g., telephony voice, image transfer, music files,
video files, real time video streaming, etc.).

Each type of computer is constructed and operates in accor-
dance with one or more communication, processing, and
storage standards. As a result of standardization and with
advances in technology, more and more information content
is being converted into digital formats. For example, more
digital cameras are now being sold than film cameras, thus
producing more digital pictures. As another example, web-
based programming is becoming an alternative to over the air
television broadcasts and/or cable broadcasts. As further
examples, papers, books, video entertainment, home video,
etc. are now being stored digitally. This increased storage of
information content increases the demand on the storage
function of computers.

A typical computer storage system includes one or more
memory devices aligned with the needs of the various opera-
tional aspects of the computer’s processing and communica-
tion functions. Generally, the immediacy of access dictates
what type of memory device is used. For example, random
access memory (RAM) memory can be accessed in any ran-
dom order with a constant response time, thus it is typically
used for cache memory and main memory. By contrast,
memory device technologies that require physical movement
such as magnetic disks, tapes, and optical discs, have a vari-
able response time as the physical movement can take longer
than the data transfer, thus they are typically used for second-
ary memory (e.g., hard drive, backup memory, etc.).

A computer’s storage system will be compliant with one or
more computer storage standards that include, but are not
limited to, network file system (NFS), flash file system (FFS),
disk file system (DFS), small computer system interface
(SCSI), internet small computer system interface (iSCSI), file
transfer protocol (FTP), and web-based distributed authoring
and versioning (WebDAV). These standards specify the data
storage format (e.g., files, data objects, data blocks, directo-
ries, etc.) and interfacing between the computer’s processing
function and its storage system, which is a primary function
of the computer’s memory controller.

Despite the standardization of the computer and its storage
system, memory devices fail; especially commercial grade
memory devices that utilize technologies incorporating
physical movement (e.g., a disc drive). For example, it is
fairly common for a disc drive to routinely suffer from bit
level corruption and to completely fail after three years of use.
One solution is to utilize a higher-grade disc drive, which
adds significant cost to a computer.

Another solution is to utilize multiple levels of redundant
disc drives to replicate the data into two or more copies. One
such redundant drive approach is called redundant array of
independent discs (RAID). In a RAID device, a RAID con-
troller adds parity data to the original data before storing it
across the array. The parity data is calculated from the original
data such that the failure of a disc will not result in the loss of
the original data. For example, RAID 5 uses three discs to
protect data from the failure of a single disc. The parity data,
and associated redundancy overhead data, reduces the storage
capacity of three independent discs by one third (e.g.,
n-1=capacity). RAID 6 can recover from a loss of two discs
and requires a minimum of four discs with a storage capacity
ofn-2.

While RAID addresses the memory device failure issue, it
is not without its own failure issues that affect its effective-
ness, efficiency and security. For instance, as more discs are
added to the array, the probability of a disc failure increases,

US 9,063,658 B2

3

which increases the demand for maintenance. For example,
when a disc fails, it needs to be manually replaced before
another disc fails and the data stored in the RAID device is
lost. To reduce the risk of data loss, data on a RAID device is
typically copied on to one or more other RAID devices. While
this addresses the loss of data issue, it raises a security issue
since multiple copies of data are available, which increases
the chances of unauthorized access. Further, as the amount of
data being stored grows, the overhead of RAID devices
becomes a non-trivial efficiency issue.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a computing system in accordance with the invention;

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the invention;

FIG. 3 is a schematic block diagram of an embodiment of
a distributed storage processing unit in accordance with the
invention;

FIG. 4 is a schematic block diagram of an embodiment of
a grid module in accordance with the invention;

FIG. 5 is a diagram of an example embodiment of error
coded data slice creation in accordance with the invention;

FIG. 6 is a schematic block diagram of an embodiment of
a file system hierarchy in accordance with the invention;

FIG. 7 is a schematic block diagram of an embodiment of
a segment and slice directory in accordance with the inven-
tion;

FIG. 8 is a logic flow diagram of an embodiment of a
method for modifying a data object in accordance with the
invention;

FIG. 9 is a logic flow diagram of an embodiment of a
method for identifying a data segment of a data object for
modification in accordance with the invention;

FIG. 10 is a schematic block diagram of an embodiment of
a modification request in accordance with the invention;

FIG. 11 is a logic flow diagram of another embodiment of
a method for modifying a data object in accordance with the
invention;

FIG. 12 is a logic flow diagram of another embodiment of
a method for modifying a data object in accordance with the
invention;

FIG. 13 is a schematic block diagram of an embodiment of
a write request in accordance with the invention;

FIG. 14 is a logic flow diagram of an embodiment of a
method for generating and storing rebuilt encoded data slices
from a modified data segment in accordance with the inven-
tion;

FIG. 15 is a schematic block diagram of an embodiment of
a data segment header in accordance with the invention;

FIG. 16 is a logic flow diagram of another embodiment of
a method for modifying a data object in accordance with the
invention;

FIG. 17 is a logic flow diagram of an embodiment of a
method for updating a system element in accordance with the
invention; and

FIG. 18 is a logic flow diagram of another embodiment of
a method for updating a system element in accordance with
the invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1is a schematic block diagram of a computing system
10 that includes one or more of a first type of user devices 12,
one or more of a second type of user devices 14, at least one

10

20

25

30

40

45

50

55

4

distributed storage (DS) processing unit 16, at least one DS
managing unit 18, at least one storage integrity processing
unit 20, and a distributed storage network (DSN) memory 22
coupled via a network 24. The network 24 may include one or
more wireless and/or wire lined communication systems; one
or more private intranet systems and/or public internet sys-
tems; and/or one or more local area networks (LAN) and/or
wide area networks (WAN).

The DSN memory 22 includes a plurality of distributed
storage (DS) units 36 for storing data of the system. Each of
the DS units 36 includes a processing module and memory
and may be located at a geographically different site than the
other DS units (e.g., one in Chicago, one in Milwaukee, etc.).
The processing module may be a single processing device or
a plurality of processing devices. Such a processing device
may be a microprocessor, micro-controller, digital signal pro-
cessor, microcomputer, central processing unit, field pro-
grammable gate array, programmable logic device, state
machine, logic circuitry, analog circuitry, digital circuitry,
and/or any device that manipulates signals (analog and/or
digital) based on hard coding of the circuitry and/or opera-
tional instructions. The processing module may have an asso-
ciated memory and/or memory element, which may be a
single memory device, a plurality of memory devices, and/or
embedded circuitry of the processing module. Such a
memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that if
the processing module includes more than one processing
device, the processing devices may be centrally located (e.g.,
directly coupled together via a wired and/or wireless bus
structure) or may be distributedly located (e.g., cloud com-
puting via indirect coupling via a local area network and/or a
wide area network). Further note that when the processing
module implements one or more of its functions via a state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry, the memory and/or memory element storing the cor-
responding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element stores, and
the processing module executes, hard coded and/or opera-
tional instructions corresponding to at least some of the steps
and/or functions illustrated in FIGS. 1-18.

Each ofthe user devices 12-14, the DS processing unit 16,
the DS managing unit 18, and the storage integrity processing
unit 20 may be a portable computing device (e.g., a social
networking device, a gaming device, a cell phone, a smart
phone, a personal digital assistant, a digital music player, a
digital video player, a laptop computer, a handheld computer,
avideo game controller, and/or any other portable device that
includes a computing core) and/or a fixed computing device
(e.g., a personal computer, a computer server, a cable set-top
box, a satellite receiver, a television set, a printer, a fax
machine, home entertainment equipment, a video game con-
sole, and/or any type of home or office computing equip-
ment). Such a portable or fixed computing device includes a
computing core 26 and one or more interfaces 30, 32, and/or
38. An embodiment of the computing core 26 will be
described with reference to FIG. 2.

With respect to the interfaces, each of the interfaces 30, 32,
and 38 includes software and/or hardware to support one or
more communication links via the network 24 and/or directly.
For example, interfaces 30 support a communication link
(wired, wireless, direct, via a LAN, via the network 24, etc.)
between the first type of user device 14 and the DS processing

US 9,063,658 B2

5

unit 16. As another example, DSN interface 32 supports a
plurality of communication links via the network 24 between
the DSN memory 22 and the DS processing unit 16, the first
type of user device 12, and/or the storage integrity processing
unit 20. As yet another example, interface 38 supports a
communication link between the DS managing unit 18 and
any one of the other devices and/or units 12, 14, 16, 20, and/or
22 via the network 24.

In general and with respect to data storage, the system 10
supports three primary functions: distributed network data
storage management, distributed data storage and retrieval,
and data storage integrity verification. In accordance with
these three primary functions, data can be distributedly stored
in a plurality of physically different locations and subse-
quently retrieved in a reliable and secure manner regardless of
failures of individual storage devices, failures of network
equipment, the duration of storage, the amount of data being
stored, attempts at hacking the data, etc.

The DS managing unit 18 performs distributed network
data storage management functions, which include establish-
ing distributed data storage parameters, performing network
operations, performing network administration, and/or per-
forming network maintenance. The DS managing unit 18
establishes the distributed data storage parameters (e.g., allo-
cation of virtual DSN memory space, distributed storage
parameters, security parameters, billing information, user
profile information, etc.) for one or more of the user devices
12-14 (e.g., established for individual devices, established for
a user group of devices, established for public access by the
user devices, etc.). For example, the DS managing unit 18
coordinates the creation of a vault (e.g., a virtual memory
block) within the DSN memory 22 for a user device (for a
group of devices, or for public access). The DS managing unit
18 also determines the distributed data storage parameters for
the vault. In particular, the DS managing unit 18 determines a
number of slices (e.g., the number that a data segment of a
data file and/or data block is partitioned into for distributed
storage) and a read threshold value (e.g., the minimum num-
ber of slices required to reconstruct the data segment).

As another example, the DS managing module 18 creates
and stores, locally or within the DSN memory 22, user profile
information. The user profile information includes one or
more of authentication information, permissions, and/or the
security parameters. The security parameters may include
one or more of encryption/decryption scheme, one or more
encryption keys, key generation scheme, and data encoding/
decoding scheme.

As yet another example, the DS managing unit 18 creates
billing information for a particular user, user group, vault
access, public vault access, etc. For instance, the DS manag-
ing unit 18 tracks the number of times a user accesses a private
vault and/or public vaults, which can be used to generate a
per-access bill. In another instance, the DS managing unit 18
tracks the amount of data stored and/or retrieved by a user
device and/or a user group, which can be used to generate a
per-data-amount bill.

The DS managing unit 18 also performs network opera-
tions, network administration, and/or network maintenance.
As at least part of performing the network operations and/or
administration, the DS managing unit 18 monitors perfor-
mance of the devices and/or units of the system 10 for poten-
tial failures, determines the devices” and/or units’ activation
status, determines the devices’ and/or units’ loading, and any
other system level operation that affects the performance
level of the system 10. For example, the DS managing unit 18
receives and aggregates network management alarms, alerts,
errors, status information, performance information, and

30

40

45

6

messages from the devices 12-14 and/or the units 16, 20, 22.
For example, the DS managing unit 18 receives a simple
network management protocol (SNMP) message regarding
the status of the DS processing unit 16.

The DS managing unit 18 performs the network mainte-
nance by identifying equipment within the system 10 that
needs replacing, upgrading, repairing, and/or expanding. For
example, the DS managing unit 18 determines that the DSN
memory 22 needs more DS units 36 or that one or more of the
DS units 36 needs updating.

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, if a second type of user device 14 has a data object
40, such as a data file and/or data block, to store in the DSN
memory 22, it sends the data object 40 to the DS processing
unit 16 via its interface 30. As will be described in greater
detail with reference to FIG. 2, the interface 30 functions to
mimic a conventional operating system (OS) file system
interface (e.g., network file system (NFS), flash file system
(FFS), disk file system (DFS), file transfer protocol (FTP),
web-based distributed authoring and versioning (WebDAV),
etc.) and/or a block memory interface (e.g., small computer
system interface (SCSI), internet small computer system
interface (iSCSI), etc.). In addition, the interface 30 may
attach a user identification code (ID) to the data object 40.

The DS processing unit 16 receives the data object 40 via
its interface 30 and performs a distributed storage (DS) pro-
cess 34 thereon (e.g., an error coding dispersal storage func-
tion). The DS processing 34 begins by partitioning the data
object 40 into one or more data segments, which is repre-
sented as Y data segments. The DS processing 34 may parti-
tion the data object 40 into fixed byte size segments (e.g., 21
to 2n bytes, where n=>2) or variable byte size segments (e.g.,
change byte size from segment to segment, or from groups of
segments to groups of segments, etc.).

For example, in FIG. 1 for each of the Y number of data
segments 42a-n, the DS processing 34 error encodes (e.g.,
forward error correction (FEC), information dispersal algo-
rithm, or error correction coding) and slices (or slices then
error encodes) the data segments 42a-r into a plurality of
error coded (EC) data slices 42a-42r and 46a-467, which are
represented as X slices per data segment. The number of
slices (X) per segment, which corresponds to a number of
pillars n, is set in accordance with the distributed data storage
parameters and the error coding scheme. For example, if a
Reed-Solomon (or other FEC scheme) is used in an X/T
system, then a data segment is divided into X number of
slices, where T number of slices are needed to reconstruct the
original data (i.e.,, T is the threshold). As a few specific
examples, the X/T factor may be 5/3; 6/4; 8/6; 8/5; 16/10.

For each slice 44a-r and 46a-n, the DS processing unit 16
creates a unique slice name and appends it to the correspond-
ing slice. The slice name includes universal DSN memory
addressing routing information (e.g., virtual memory
addresses in the DSN memory 22) and user-specific informa-
tion (e.g., user ID, file name, data block identifier, etc.).

The DS processing unit 16 transmits the plurality of EC
slices 44a-n and 46a-n to a plurality of DS units 36 of the DSN
memory 22 via the DSN interface 32 and the network 24. The
DSN interface 32 formats each of the slices for transmission
via the network 24. For example, the DSN interface 32 may
utilize an internet protocol (e.g., TCP/IP, etc.) to packetize the
slices 44a-n and 46a-n for transmission via the network 24.

The number of DS units 36 receiving the slices 44a-» and
46a-n is dependent on the distributed data storage parameters
established by the DS managing unit 18. For example, the DS
managing unit 18 may indicate that each slice is to be stored

US 9,063,658 B2

7

in a different DS unit 36. As another example, the DS man-
aging unit 18 may indicate that like slice numbers of different
data segments are to be stored in the same DS unit 36. For
example, the first slice 44a and 46a of each of the data
segments 42a-7 is to be stored in a first DS unit 36, the second
slice 445 and 465 of each of the data segments 42a-7 is to be
stored in a second DS unit 36, etc. In this manner, the data is
encoded and distributedly stored at physically diverse loca-
tions to improve data storage integrity and security. Further
examples of encoding the data segments will be provided
with reference to one or more of FIGS. 2-18.

Each DS unit 36 that receives a slice for storage translates
the virtual DSN memory address of the slice into a local
physical address for storage. Accordingly, each DS unit 36
maintains a virtual to physical memory mapping to assist in
the storage and retrieval of data.

The first type of user device 12 performs a similar function
to store data in the DSN memory 22 with the exception that it
includes the DS processing. As such, the device 12 encodes
and slices the data file and/or data block it has to store. The
device then transmits the slices 11 to the DSN memory via its
DSN interface 32 and the network 24.

For a second type of user device 14 to retrieve a data file or
data block from memory, it issues a read command via its
interface 30 to the DS processing unit 16. The DS processing
unit 16 performs the DS processing 34 to identify the DS units
36 storing the slices of the data file and/or data block based on
the read command. The DS processing unit 16 may also
communicate with the DS managing unit 18 to verify that the
user device 14 is authorized to access the requested data.

Assuming that the user device is authorized to access the
requested data, the DS processing unit 16 issues slice read
commands to at least a threshold number of the DS units 36
storing the requested data (e.g., to at least 10 DS units for a
16/10error coding scheme). Each of the DS units 36 receiving
the slice read command, verifies the command, accesses its
virtual to physical memory mapping, retrieves the requested
slice, or slices, and transmits it to the DS processing unit 16.

Once the DS processing unit 16 has received a read thresh-
old number of slices for a data segment, it performs an error
decoding function and de-slicing to reconstruct the data seg-
ment. When Y number of data segments has been recon-
structed, the DS processing unit 16 provides data object 40 to
the user device 14. Note that the first type of user device 12
performs a similar process to retrieve data object 40.

The storage integrity processing unit 20 performs the third
primary function of data storage integrity verification. In
general, the storage integrity processing unit 20 periodically
retrieves slices 48, and/or slice names, of a data object 40 to
verify that one or more slices have not been corrupted or lost
(e.g., the DS unit failed). The retrieval process mimics the
read process previously described.

If the storage integrity processing unit 20 determines that
one or more slices 48 is corrupted or lost, it rebuilds the
corrupted or lost slice(s) in accordance with the error coding
scheme. The storage integrity processing unit 20 stores the
rebuilt slice, or slices, in the appropriate DS unit(s) 36 in a
manner that mimics the write process previously described.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50, a
memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (IO) controller 56, a
peripheral component interconnect (PCI) interface 58, atleast
one 10 interface 60, 10 device interface module 62, a read
only memory (ROM) basic input output system (BIOS) 64,
and one or more memory interface modules. The memory
interface module(s) includes one or more of a universal serial

10

15

20

25

30

35

40

45

50

55

60

65

8

bus (USB) interface module 66, a host bus adapter (HBA)
interface module 68, a network interface module 70, a flash
interface module 72, a hard drive interface module 74, and a
DSN interface module 76. Note the DSN interface module 76
and/or the network interface module 70 may function as the
interface 30 of the user device 14 of FIG. 1. Further note that
the 10 device interface module 62 and/or the memory inter-
face modules may be collectively or individually referred to
as 10 ports.

The processing module 50 may be a single processing
device or a plurality of processing devices. Such a processing
device may be a microprocessor, micro-controller, digital
signal processor, microcomputer, central processing unit,
field programmable gate array, programmable logic device,
state machine, logic circuitry, analog circuitry, digital cir-
cuitry, and/or any device that manipulates signals (analog
and/or digital) based on hard coding of the circuitry and/or
operational instructions. The processing module 50 may have
anassociated memory and/or memory element, which may be
a single memory device, a plurality of memory devices, and/
or embedded circuitry of the processing module 50. Such a
memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that if
the processing module 50 includes more than one processing
device, the processing devices may be centrally located (e.g.,
directly coupled together via a wired and/or wireless bus
structure) or may be distributedly located (e.g., cloud com-
puting via indirect coupling via a local area network and/or a
wide area network). Further note that when the processing
module 50 implements one or more of'its functions via a state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry, the memory and/or memory element storing the cor-
responding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element stores, and
the processing module 50 executes, hard coded and/or opera-
tional instructions corresponding to at least some of the steps
and/or functions illustrated in FIGS. 1-18.

FIG. 3 is a schematic block diagram of an embodiment of
adispersed storage (DS) processing module 34 of user device
12 and/or of the DS processing unit 16. The DS processing
module 34 includes a gateway module 78, an access module
80, a grid module 82, and a storage module 84. The DS
processing module 34 may also include an interface 30 and
DSN interface 32 or the interfaces 30 and/or 32 may be part of
user 12 or of the DS processing unit 14. The DS processing
module 34 may further include a bypass/feedback path
between the storage module 84 to the gateway module 78.
Note that the modules 78-84 of the DS processing module 34
may be in a single unit or distributed across multiple units.

In an example of storing data, the gateway module 78
receives an incoming request with a data object 40. The
incoming request may also include a user ID field 86, an
object name field 88 and other corresponding information
such as a process identifier (e.g., an internal process/applica-
tion ID), metadata, a file system directory, a block number, a
transaction message, a user device identity (ID), a data object
identifier, a source name, and/or user information. The gate-
way module 78 authenticates the user associated with the data
object by verifying the user ID 86 with the managing unit 18
and/or another authenticating unit.

When the user is authenticated, the gateway module 78
obtains user information from the management unit 18, the
user device 12-Source 14, and/or the other authenticating

US 9,063,658 B2

9

unit. The user information includes a vault identifier, opera-
tional parameters, and user attributes (e.g., user data, billing
information, etc.). A vault identifier identifies a vault, which
is a virtual memory space that maps to a set of DS storage
units 36. For example, vault 1 (i.e., user 1’s DSN memory
space) includes eight DS storage units (X=8 wide) and vault
2 (i.e., user 2’s DSN memory space) includes sixteen DS
storage units (X=16 wide). The operational parameters may
include an error coding algorithm, the width n (number of
pillars X or slices per segment for this vault), a read threshold
T, awrite threshold, an encryption algorithm, a slicing param-
eter, a compression algorithm, an integrity check method,
caching settings, parallelism settings, and/or other param-
eters that may be used to access the DSN memory layer.

The gateway module 78 uses the user information to assign
a source name 35 to the data object 40. For instance, the
gateway module 78 determines the source name 35 of the data
object 40 based on the vault identifier and the data object 40.
For example, the source name may contain a file identifier
(ID), a vault generation number, a reserved field, and a vault
identifier (ID). As another example, the gateway module 78
may generate the file ID based on a hash function of the data
object 40. Note that the gateway module 78 may also perform
message conversion, protocol conversion, electrical conver-
sion, optical conversion, access control, user identification,
user information retrieval, traffic monitoring, statistics gen-
eration, configuration, management, and/or source name
determination.

The access module 80 receives the data object 40 and
creates a plurality of data segments 1 through Y 42a-z in
accordance with a data storage protocol (e.g., file storage
system, a block storage system, and/or an aggregated block
storage system). The numberY of data segments may be fixed
with a segment size depending on the data object size or the
number of segments may vary with a fixed segment size. For
example, when the number Y of segments is chosen to be a
fixed number, then the size of the segments varies as a func-
tion of the size of the data object. For instance, if the data
object is an image file of 4,194,304 eight bit bytes (e.g.,
33,554,432 bits) and the number of segments Y=131,072,
then each segment is 256 bits or 32 bytes. As another example,
when the segment size is fixed, then the number of segments
Y varies based on the size of data object. For instance, if the
data object is an image file of 4,194,304 bytes and the fixed
segment size of each segment is 4,096 bytes, then the number
of segments Y=1,024. Note that each segment is associated
with the same source name 35.

The grid module 82 receives the Y data segments and may
manipulate (e.g., compression, encryption, cyclic redun-
dancy check (CRC), etc.) each of the data segments before
performing an error coding function of the error coding dis-
persal storage function to produce a pre-manipulated data
segment. After manipulating a data segment, if applicable, the
grid module 82 error encodes (e.g., Reed-Solomon, Convo-
Iution encoding, Trellis encoding, etc.) the data segment or
manipulated data segment into X error coded data slices
42-44.

The value X, or the number of pillars (e.g., X=16), is
chosen as a parameter of the error coding dispersal storage
function. Other parameters of the error coding dispersal func-
tion include a read threshold T, a write threshold W, etc. The
read threshold (e.g., T=10, when X=16) corresponds to the
minimum number of error coded data slices required to
reconstruct the data segment. In other words, the DS process-
ing module 34 can compensate for X-T (e.g., 16—10=6) miss-
ing error coded data slices per data segment. The write thresh-
0ld W corresponds to a minimum number of DS storage units

25

40

45

55

10

that acknowledge proper storage of their respective data
slices before the DS processing module indicates proper stor-
age of the encoded data segment. Note that the write threshold
W is greater than or equal to the read threshold T (i.e., W=T)
for a given number of pillars (X).

For each data slice of a data segment, the grid module 82
generates a unique slice name 37 and attaches it thereto. The
slice name 37 includes a universal routing information field
and a vault specific field and may be 48 bytes (e.g., 24 bytes
for each of the universal routing information field and the
vault specific field). As illustrated, the universal routing infor-
mation field includes a slice index, a vault ID, a vault genera-
tion, and a reserved field. The slice index is based on the pillar
number n and the vault ID and, as such, is unique for each
pillar (e.g., slices of the same pillar for the same vault for any
segment will share the same slice index). The vault specific
field includes a data name, which includes a file ID and a
segment number (e.g., a sequential numbering of data seg-
ments 1-Y of a simple data object or a data block number).

Prior to outputting the error coded data slices of a data
segment, the grid module may perform post-slice manipula-
tion on the slices. If enabled, the manipulation includes slice
level compression, encryption, CRC, addressing, tagging,
and/or other manipulation to improve the effectiveness of the
computing system.

When the error coded (EC) data slices of a data segment are
ready for storage, the grid module 82 determines which of the
DS storage units 36 will store the EC data slices based on a
dispersed storage memory mapping associated with the
user’s vault and/or DS storage unit 36 attributes. The DS
storage unit attributes may include availability, self-selection,
performance history, link speed, link latency, ownership,
available DSN memory, domain, cost, a prioritization
scheme, a centralized selection message from another source,
a lookup table, data ownership, and/or any other factor to
optimize the operation of the computing system. Note that the
number of DS storage units 36 in an embodiment is equal to
or greater than the number of pillars (e.g., X) so that no more
than one error coded data slice of the same data segment is
stored on the same DS storage unit 36. Further note that EC
data slices of the same pillar number but of different segments
(e.g., EC data slice 1 of data segment 1 and EC data slice 1 of
data segment 2) may be stored on the same or different DS
storage units 36.

The storage module 84 performs an integrity check on the
outbound encoded data slices and, when successtul, identifies
aplurality of DS storage units based on information provided
by the grid module. The storage module then outputs the
encoded data slices 1 through X of each segment 1 throughY
to the DS storage units. Each of the DS storage units 36 stores
its EC data slice(s) and maintains a local virtual DSN address
to physical location table to convert the virtual DSN address
of'the EC data slice(s) into physical storage addresses.

In an example of a read operation, the user device 12 and/or
14 sends a read request to the DS processing 34, which
authenticates the request. When the request is authentic, the
DS processing 34 sends a read message to each of the DS
storage units 36 storing slices of the data object being read.
The slices are received via the DSN interface 32 and pro-
cessed by the storage module 84, which performs a parity
check and provides the slices to the grid module 82 when the
parity check is successful. The grid module 82 decodes the
slices in accordance with the error coding dispersal storage
function to reconstruct the data segment. The access module
80 reconstructs the data object from the data segments and the
gateway module 78 formats the data object for transmission
to the user device.

US 9,063,658 B2

11

FIG. 4 is a schematic block diagram of an embodiment of
a grid module 82 that includes a control unit 73, a pre-slice
manipulator 75, an encoder 77, a slicer 79, a post-slice
manipulator 81, a pre-slice de-manipulator 83, a decoder 85,
a de-slicer 87, and/or a post-slice de-manipulator 89. Note
that the control unit 73 may be partially or completely exter-
nal to the grid module 82. For example, the control unit 73
may be part of the computing core at a remote location, part of
a user device, part of the DS managing unit 18, or distributed
amongst one or more DS storage units.

In an example of write operation, the pre-slice manipulator
75 receives a data segment 42 and a write instruction from an
authorized user device. The pre-slice manipulator 75 deter-
mines if pre-manipulation of the data segment 42 is required
and, if so, what type. The pre-slice manipulator 75 may make
the determination independently or based on instructions
from the control unit 73, where the determination is based on
a computing system-wide predetermination, a table lookup,
vault parameters associated with the user identification, the
type of data, security requirements, available DSN memory,
performance requirements, and/or other metadata.

Once a positive determination is made, the pre-slice
manipulator 75 manipulates the data segment 42 in accor-
dance with the type of manipulation. For example, the type of
manipulation may be compression (e.g., Lempel-Ziv-Welch,
Huffman, Golomb, fractal, wavelet, etc.), signatures (e.g.,
Digital Signature Algorithm (DSA), Elliptic Curve DSA,
Secure Hash Algorithm, etc.), watermarking, tagging,
encryption (e.g., Data Encryption Standard, Advanced
Encryption Standard, etc.), adding metadata (e.g., time/date
stamping, user information, file type, etc.), cyclic redundancy
check (e.g., CRC32), and/or other data manipulations to pro-
duce the pre-manipulated data segment.

The encoder 77 encodes the pre-manipulated data segment
42 using a forward error correction (FEC) encoder (and/or
other type of erasure coding and/or error coding) to produce
an encoded data segment 94. The encoder 77 determines
which forward error correction algorithm to use based on a
predetermination associated with the user’s vault, a time
based algorithm, user direction, DS managing unit direction,
control unit direction, as a function of the data type, as a
function of the data segment 42 metadata, and/or any other
factor to determine algorithm type. The forward error correc-
tion algorithm may be Golay, Multidimensional parity, Reed-
Solomon, Hamming, Bose Ray Chauduri Hocquenghem
(BCH), Cauchy-Reed-Solomon, or any other FEC encoder.
Note that the encoder 77 may use a different encoding algo-
rithm for each data segment 42, the same encoding algorithm
for the data segments 42 of a data object, or a combination
thereof.

The encoded data segment 94 is of greater size than the data
segment 42 by the overhead rate of the encoding algorithm by
a factor of X/T, where X is the width or number of slices, and
T is the read threshold. In this regard, the corresponding
decoding process can accommodate at most X-T missing EC
data slices and still recreate the data segment 42. For example,
if X=16 and T=10, then the data segment 42 will be recover-
able as long as 10 or more EC data slices per data segment are
not corrupted.

The slicer 79 transforms the encoded data segment 94 into
EC data slices in accordance with the slicing parameter from
the vault for this user and/or data segment 42. For example, if
the slicing parameter is X=16, then the slicer slices each
encoded data segment 94 into 16 encoded slices.

The post-slice manipulator 81 performs, if enabled, post-
manipulation on the encoded slices to produce the EC data
slices. If enabled, the post-slice manipulator 81 determines

10

15

20

25

30

35

40

45

50

55

60

65

12

the type of post-manipulation, which may be based on a
computing system-wide predetermination, parameters in the
vault for this user, a table lookup, the user identification, the
type of data, security requirements, available DSN memory,
performance requirements, control unit directed, and/or other
metadata. Note that the type of post-slice manipulation may
include slice level compression, signatures, encryption, CRC,
addressing, watermarking, tagging, adding metadata, and/or
other manipulation to improve the effectiveness of the com-
puting system.

In an example of a read operation, the post-slice de-ma-
nipulator 89 receives at least a read threshold number of EC
data slices and performs the inverse function of the post-slice
manipulator 81 to produce a plurality of encoded slices. The
de-slicer 87 de-slices the encoded slices to produce an
encoded data segment 94. The decoder 85 performs the
inverse function of the encoder 77 to recapture the data seg-
ment 42. The pre-slice de-manipulator 83 performs the
inverse function of the pre-slice manipulator 75 to recapture
the data segment.

FIG. 5 is a diagram of an example of slicing an encoded
data segment 94 by the slicer 79. In this example, the encoded
data segment includes thirty-two bits, but may include more
orlessbits. The slicer 79 disperses the bits of the encoded data
segment 94 across the EC data slices in a pattern as shown. As
such, each EC data slice does not include consecutive bits of
the data segment 94 reducing the impact of consecutive bit
failures on data recovery. For example, if EC data slice 2
(which includes bits 1, 5,9, 13,17, 25, and 29) is unavailable
(e.g., lost, inaccessible, or corrupted), the data segment can be
reconstructed from the other EC data slices (e.g., 1,3 and 4 for
a read threshold of 3 and a width of 4).

FIG. 6 is a schematic block diagram of an embodiment of
a file system hierarchy including a plurality of user virtual
memories in a virtual DSN address space 148, a virtual dis-
persed storage network (DSN) address to physical location
table 142, and a physical dispersed storage network (DSN)
memory 22. The file system hierarchy is an illustration of
translating a user virtual memory address space 152 into a
virtual dispersed storage network (DSN) address space 148
and then to a physical address in a DSN memory 22. In this
illustration, the physical DSN memory 22 includes a plurality
of DS storage units 36 (e.g., A, C, D, and F). In an example,
where there are four pillars, there are four slices (X=4) cre-
ated for each of Y data segments. Pillars can be allocated to
more than one DS storage unit, but a given DS storage unit is
not generally assigned to store more than one pillar from a
given file/data object of a user vault to improve system robust-
ness (e.g., avoiding loss of multiple slices of a data segment as
a result of a single DS storage unit failure).

In an embodiment, one of the plurality of user virtual
memories 152 a-» utilizes a native OS file system to access
the virtual DSN address space 148 by including source name
information in requests such as read, write, modify, delete,
list, etc. A vault identifier in the source name and/or a file/
block name may be used to index the virtual DSN address
space 148 to determine a user vault. A unique virtual vault is
associated with each user (e.g., an individual, a group of
individuals, a business entity, a group of business entities,
etc.) and may contain operational parameters (described with
more detail with respect to FIG. 7), user attributes (e.g., user
identification, billing data, etc.) and a list of DSN memories
22 and a plurality of storage units 36 for a DSN memory 22
that may be utilized to support the user.

In an example, the total virtual DSN address space 148 is
defined by a forty-eight byte identifier thus creating 25648
possible slice names. The virtual DSN address space 148

US 9,063,658 B2

13

accommodates addressing of EC data slices corresponding to
segments of data objects (e.g., data file, blocks, streams) over
various generations and vaults. The slice name is a virtual
DSN address and remains the same even as different DS
memories 22 or DS storage units 36 are added or deleted from
the physical DSN memory 22.

A user has a range of virtual DSN addresses assigned to
their vault, user virtual memory 152 a-n. For instance, the
virtual DSN addresses typically do not change over the opera-
tional lifespan of the system for the user. In another instance,
the virtual DSN address space 148 is dynamically altered
from time to time to provide such benefits as improved secu-
rity and expansion, retraction, and/or capability. A virtual
DSN address space 148 security algorithm may alter the
virtual DSN address space 148 according to one or more of a
command (e.g., from the DS managing unit 18), a schedule, a
detected security breach, or any other trigger. The virtual
DSN address may also be encrypted in use thus requiring
encryption and decryption steps whenever the virtual DSN
address is used.

The vault and file name index used to access the virtual
DSN address space 148 and to create the slice names (virtual
DSN addresses) may also be used as an index to access the
virtual DSN address to physical location table 142. For
example, the virtual DSN address to physical location table
142 is sorted by vaults and pillars so that subsequent
addresses are organized by pillar of the file data segments of
a data object that have EC data slices with the same slice
identifier and hence are typically stored at the same DS stor-
age unit (e.g., slices having a first pillar identifier are stored in
DS storage unit A of DSN memory 22). The output of the
access to the virtual DSN address to physical location table
142 is the DSN memory identifier 154 and DS storage unit
identifiers 156. A source name, data segment header and/or
slice name may include the DSN memory identifier 154 and/
or DS storage unit identifiers 156.

The slice names may be used as the virtual index to the
memory system of each DS storage unit 36 of a particular DS
memory 22 to gain access to the physical location of the EC
data slices. In this instance, the DS storage unit 36 of the DS
memory 22 maintains a local table correlating slice names
(virtual DSN address) to the addresses of the physical media
internal to the DS storage unit 36. For example, user number
1 has a vault identified operational parameter of four pillars
and pillar 0 is mapped to DS storage unit A of DSN memory
22, pillar 1 is mapped to DS storage unit C of DSN memory
22, pillar 2 is mapped to DS storage unit D of DSN memory
22, and pillar 3 is mapped to DS storage unit F of DSN
memory 22.

FIG. 7 is a schematic block diagram of an embodiment of
certain parameters associated with a user vault 200. The
parameters illustrated in FIG. 7 may be stored in the user vault
200 or other resource, such as a user file, parameter database,
file/block index, URL, etc. that is implemented in the man-
aging unit 18, DS processing unit 16 or a DS processing
module 34.

The operational parameters 202 include vault identifier
field 204, vault generation field 206, error encoding scheme
field 212, slice number X field 214 (e.g., number of pillars n
for the user vault) and threshold number T field 216. The
operational parameters 202 also include a fixed segment num-
berY field 208 and/or a Fixed Segment Size Field 210. In an
embodiment, the user vault 200 is configured with a Fixed
Segment Size Field 210. Since the data segment size is fixed,
the numberY of data segments varies depending on the size of
a data object. Padding or stuffing bytes may be added to one
or more data segments to obtain the fixed segment size. In

10

15

20

25

30

35

40

45

50

55

60

14

another embodiment, the user vault 200 is configured with a
fixed segment number Y field 208. Since the number of data
segments is fixed, the size of the data segments varies depend-
ing on the size of a data object. In another embodiment, a user
vault 200 may have varying configurations for different data
objects. For example, some data objects are partitioned into a
varying numberY of data segments with a fixed segment size
while other data objects are partitioned into a fixed numberY
of data segments with varying size. The operational param-
eters 202 associated with a user vault 200 shown in FIG. 7
may also include other fields not described herein.

The user vault 200, or other resource, such as a user file,
parameter database, file/block index, URL, etc., also stores
Files 220 a-» with data segment information specific to data
objects, including data segment size field 224, data segment
number Y field 226, segment revision field 228, data object
size field 230 and segmentation strategy field 232. In an
example for a data object 40 having 4,194,304 bytes, when
the Fixed Segment Size Field 210 specifies partitioning a data
object 40 into fixed byte size segments of 4,096 bytes, then
the data segment number field 224 specifies 1,024 data seg-
ments for the data object. Since the segment size is fixed, the
File 220 for the data object may not include the data segment
size field 226. In another example for a data object 40 having
4,194,304 bytes, when the Fixed Segment Number Y Field
208 specifies Y=131,072, then the data segment size field 224
for the data object specifies 32 bytes. Since the segment
number Y is fixed, the File 220 for the data object may not
include the data segment number field 226. The segment
revision field 228 stores a revision number for the data object.
The data object size field 230 stores a size of the data object,
e.g. a number of bytes in the data object. The segmentation
strategy field 232 stores whether the data object has a fixed
number of data segments or a fixed segment size.

Inan embodiment, one or more of the parameters in the File
220 may be included in the source name 35 for a data object
or included in slice names 37 for a data segment or included
in a data segment name or header. Other information not
shown in FIG. 7, such as data object name, source name, file
id, vault id, etc. associated with a data object may be stored as
well in the user vault 200.

In an embodiment, when a stored data object needs to be
modified, a user device 12 and/or 14 sends a modification
request to a DS processing module 34, which authenticates
the request. When the request is authenticated, the DS pro-
cessing 34 reconstructs each of the plurality of data segments
for the data object. It sends a read message to each of the DS
storage units 36 storing at least a threshold number T of data
slices for each of the plurality of data segments. The data
slices are received for the plurality of data segments and the
data segments are rebuilt therefrom. The DS processing 34
then reconstructs the data object from the plurality of rebuilt
data segments and modifies the data object as per the modi-
fication request. However, this process of modification
requires that each of the plurality of data segments is rebuilt
and that in turn requires retrieving data slices for each data
segment.

FIG. 8 is a flowchart illustrating another embodiment of a
method 250 for modifying a stored data object 40 in the
distributed storage network in accordance with the invention.
In this embodiment, the DS processing module 34 only
retrieves the data segments of the data object that require
modification in response to the modification request. This
embodiment improves response time and security by retriev-
ing and rebuilding only a portion of the data object rather than

US 9,063,658 B2

15

the entire data object. In addition, only the rebuilt portion of
the data object needs to be processed and stored after modi-
fication.

In operation, the DS processing module 34 identifies at
least one of a plurality of data segments of a data object
requiring modification in step 252. The DS processing mod-
ule 34 reconstructs the identified data segment from at least a
threshold number T of the plurality of encoded data slices for
the identified data segment to produce a reconstructed data
segment in step 254. The DS processing module 34 then
modifies the reconstructed data segment to generate a modi-
fied data segment in step 256. The modifications may include
additions, deletions or revisions to one or more bytes of the
reconstructed data segment. In an embodiment, the DS pro-
cessing module 34 then generates a plurality of rebuilt
encoded data slices from the modified data segment using the
error encoding dispersal function and transmits the rebuilt
encoded data slices for storage.

FIG. 9 is a logic flow diagram of an embodiment of a
method 280 for identifying at least one of a plurality of data
segments of a data object requiring modification. In an
embodiment, in step 282, the DS processing module 34
receives a request to modify a portion of a data object 40 from
one of a user device 12-14, DS processing unit 16, DS man-
aging unit 18, storage integrity processing unit 20, DSN
memory or a DS unit 36. In an embodiment, the modification
request includes, inter alia, a user ID field, object name field
and a position indicator and requested modifications. The
position indicator includes an identification of or pointer to
one or more bytes of the data object 40 for modification. For
example, the position indicator may indicate byte 125,348 out
ot 2,465,820 bytes in the data object 40.

The DS processing module 34 determines a segment size of
the plurality of data segments of the data object in step 284. In
an embodiment, the DS processing module 34 accesses the
user vault 200 to determine a data segment size for the data
object 40. When the operational parameters 202 for a user
vault 200 indicate that data segments must have a fixed size,
then the DS processing module 30 may only need to access
the Fixed Segment Size Field 210 for the user vault 200.
When the user vault indicates data objects have a fixed seg-
ment number Y with varying sizes, then the DS Processing
Module 34 may also need to access the data segment size field
224 for the data object in one of the Files 220 g-». In an
embodiment, the data segments of a data object may have
varying sizes. For example, a first data segment includes
100,000 bytes and a second data segment includes 80,000
bytes, etc. In such a case, the DS processing module 34 must
determine one or more sizes for the plurality of the data
segments of the data object from the user vault 200. In another
embodiment, the modification request may include a data
segment size for the plurality of data segments for the data
object.

The DS processing module 34 in step 286 then identifies
one or more data segments of the data object 40 requiring
modification based on the position indicator and the data
segment sizes. For example, when the data segment size is
100,000 bytes and the position indicator denotes byte 125,
348, the DS processing module 34 identifies the second data
segment of the data object 40 for modification because it
includes the byte 125,348 that requires modification. Once
the data segment is identified, the DS processing module 34
then determines a virtual DSN address of the encoded data
slices for the identified data segment from the user virtual
memory 152, source name, data segment header, etc. and
retrieves at least a threshold number T of the encoded data
slices for the identified data segment from a DSN memory 22

10

15

20

25

30

35

40

45

50

55

60

65

16

based on the virtual DSN address to physical location table
142. The DS processing module then reconstructs the identi-
fied data segment to generate a reconstructed data segment in
step 288.

FIG. 10 is a schematic block diagram of an embodiment of
a modification request 300. The modification request 300
includes a packet header 302 having for example, a user ID
field 306, object name field 308, transaction type field 310,
source name field 312, and payload length field 314. The
transaction type field 310 identifies the packet as a modifica-
tion request. In operation, the DS processing module 34 pro-
cesses the source name field 312 information in the modifi-
cation request 300 to determine a vault identifier and to index
the user vault 200. When a source name is not available, the
DS processing module 34 utilizes the user ID and object name
to access the user virtual memory 152 to determine a vault
identifier. The DS processing module then determines a vir-
tual DSN address 148 for the data object from user virtual
memory 152.

The payload 304 of the modification request 300 includes
one or more position indicator fields 316 a-» and correspond-
ing one or more modification fields 318 a-r. The position
indicator field 316 includes an identification of or pointer to
one or more bytes of the data object 40 for modification in
accordance with the corresponding modification field 318.
The modification field 318 may include instructions for addi-
tions, deletions or revisions.

FIG. 11 is a logic flow diagram of an embodiment of a
method 340 for modifying the reconstructed data segment. In
step 342, the DS processing module 34 modifies the recon-
structed data segment in accordance with the modification
request to generate a modified data segment. The modifica-
tion may include changing one or more bytes of the data
segment or deleting or adding one or more bytes. In an
embodiment, the DS processing module 34 identifies and
modifies more than one data segment when one or more bytes
to be modified are included within more than one data seg-
ment. In step 344, the data segment size field 224 in the user
vault 200 or in a source name or packet header for the data
segment is modified to update any changes to the data seg-
ment size. The segment revision field 228 in the user vault 200
or in a source name or packet header for the data segment is
also updated in step 346.

FIG. 12 is a logic flow diagram of another embodiment of
a method 350 for modifying the reconstructed data segment.
When modifications result in deleting or adding one or more
bytes to a data segment or otherwise changing the data seg-
ment size in step 352, the DS processing module 34 in step
354 determines whether the modified data segment size needs
to be revised in step 354. For example, the operational param-
eters 202 for the user vault 200 may require a fixed segment
size or each of the plurality of data segments for the data
object may each need to have a same data segment size, etc.
When the segment size of the modified data segment does not
need to be modified, the process continues to step 364 in
which a data segment size field 224 is updated and then to step
366 in which a revision field is updated.

When the modified data segment size needs to be revised in
step 354, the DS processing module 34 determines whether it
needs to increase or decrease the size of the modified data
segment in step 356. To increase the size of the modified data
segment in step 358, the DS processing module includes
stuffing or padding bytes to the data segment. When the
modified data segment size needs to decrease, the DS pro-
cessing module 34 divides the modified data segment to gen-
erate at least two divided modified data segments in step 360.
The DS processing module 34 may then add stuffing or pad-

US 9,063,658 B2

17

ding bytes to one or more of the divided data segments to
reach the desired segment size, e.g., the fixed segment size or
data segment size of the other plurality of data segments for
the data object, etc. In step 362, the DS processing module
updates the Data Segment Number Y field 226 for the data
object 40 in the user vault 200. The DS processing module 30
also updates the data segment size field 224 in step 364, and
the revision field 228 for the data segment is updated to
indicate a new number of total data object bytes in step 366.

When modification is complete on a modified data segment
(including any divided modified data segments), the DS pro-
cessing module 34 encodes the modified data segment and
slices it using an error encoding dispersal function based on
the operational parameters in the user vault 200 to produce a
number X of rebuilt encoded data slices. The DS processing
module 34 generates a write request message to transmit the
rebuilt encoded data slices to a DSN memory 22 for storage in
a plurality of DS units 36.

FIG. 13 illustrates a schematic block diagram of an
embodiment of a write request message 380 having a protocol
header 382 and a payload with one or more slice packets 384
a-n. A slice packet 384 includes a slice name field 388, a slice
revision field 390, a slice length field 392, and a slice payload
field 394. Each of the fields of a slice packet corresponds to
the same encoded data slice. The slice name field 388 contains
the slice name of the rebuilt encoded data slice while the slice
revision field 390 contains a slice revision of the rebuilt
encoded data slice. Since the rebuilt encoded data slice has
been modified, the slice revision field is updated to reflect a
new version. The slice length field 392 includes a slice length
value representing a number of bytes of the rebuilt encoded
dataslice. The slice payload field 394 includes the bytes of the
rebuilt encoded data slice.

FIG. 14 illustrates a logic flow diagram of an embodiment
of' a method 400 for generating and storing rebuilt encoded
data slices from a modified data segment. As discussed, the
DS processing module 34 encodes the modified data segment
and slices it using an error encoding dispersal function based
on the operational parameters in the user vault 200 to produce
a plurality of rebuilt encoded data slices in step 402. The DS
processing module 34 generates a slice packet 384 for each of
the plurality of rebuilt encoded data slices in step 404 and
updates the slice name field 388, slice revision field 390, slice
length field 392 and slice payload field 394 for each of the
slice packets 384 in step 406. The DS processing module 34
generates the protocol header and payload with the slice
packets 384 to produce a write request message in step 408
and transmits the write request message to one or more DSN
memories 22 for storage of the rebuilt encoded data slices in
aplurality of storage units 36 in step 410. The DS processing
module 34 may update the virtual DSN address to physical
location table 142 when there are any changes to the address-
ing of the rebuilt encoded data slices.

FIG. 15 is a schematic block diagram of an embodiment of
a data segment header 412 for a data segment 42. The data
segment 412 includes a data object size field 230, a fixed
segment size field 210, segmentation strategy field 232 and
segment revision field 228. The data segment header 412 may
be included with a first of the plurality of data segments of the
data object or included on each of the data segments. Addi-
tional or alternate fields may also be included in the data
segment header 412.

FIG. 16 is a flowchart illustrating another embodiment of a
method 430 for modifying a data object stored in a DSN
memory 22. In an embodiment, the DS processing module 34
replaces an identified data segment without reconstructing it.
For example, when a modification request includes modifi-

10

15

20

25

30

35

40

45

50

55

60

65

18

cations that would replace data for an entire identified data
segment, then the identified data segment does not need to be
reconstructed. Instead, a replacement data segment is gener-
ated and the identified data segment is replaced or overwritten
by the replacement data segment.

In an embodiment, in step 432, the DS processing module
34 receives a modification request 300 to modify a data object
40 from one of auser device 12-14, DS processing unit 16, DS
managing unit 18, storage integrity processing unit 20, DSN
memory or a DS unit 36. The DS processing module 34
determines a segment size of the plurality of data segments of
the data object in step 434. The DS processing module 34 in
step 436 then identifies one or more data segments of the data
object 40 requiring modification based on the position indi-
cator and the data segment size of the plurality of data seg-
ments to generate an identified data segment. In step 438, the
DS processing module 34 determines whether the identified
data segment is replaced. For example, the requested modi-
fications may include new data or revised data for the entire
identified data segment. If so, a replacement data segment is
generated from the data in the modification request in step
440. The replacement data segment is then processed based
on an error encoding dispersal function to generate a plurality
ofreplacement data slices in step 440. A segment revision 228
is updated for the replacement data segment in the user vault
200 or the data segment header 412. The slice revision field
390 for the plurality of replacement data slices is also revised
in step 442 though the replacement data slices will retain the
same slice names as the stored data slices of the identified data
segment. The DS processing module 34 then transmits the
plurality of replacement data slices to the DSN memory 22 in
step 446. The plurality of data slices from the identified data
segment are deleted and overwritten or replaced by the plu-
rality of replacement data slices of the replacement data seg-
ment.

When a data segment is not replaced in step 438, the
identified data segment is reconstructed in step 448 and modi-
fied to generate a modified data segment in step 450 as
described herein.

In an embodiment, the DS processing module 34 identifies
and reconstructs one or more data segments of a data object
that require modification in response to a modification
request. Response time and security are improved because
only a portion of the data object is processed for modification.

FIG. 17 is a logic flow diagram of an embodiment of a
method 500 for updating software operating or stored on
system elements of the distributed storage network. The sys-
tem elements include devices or modules thereof operating in
the distributed storage network, such as inter alia, user device
12, 14, DS processing unit 16, computing core 26, interfaces
30, 32, 38, DS managing unit 18, storage integrity unit 20,
DSN memory 22, and DS unit 36. DS managing unit 18
determines whether a software update for one or more of the
system elements is available in step 502. A software update
includes updates, fixes, patches, new applications, new ver-
sions of existing applications, or other modifications or addi-
tions to the software operating or stored on a system element.
For example, the DS managing unit 18 determines whether a
software update has been received over a network connection
from another network node or a memory device (e.g., a disc,
a USB memory stick, etc.) or whether a software update is
available for download, such as from a network web server or
other resource.

When available in step 504, the DS managing unit 18
downloads or receives the software update and stores the
software update in a repository memory. When the DS man-
aging unit 18 determines that software updates are not cur-

US 9,063,658 B2

19

rently available in step 504, the DS managing unit 18 contin-
ues to determine whether a software update for one or more of
the system elements is available.

In step 506, the DS managing unit 18 determines whether
any of the system elements require the software update. For
example, the DS managing unit 18 may maintain a list of
system elements and versions of software operating thereon.
The DS managing unit 18 then compares the version of the
software update to the version listed for the system elements.
In another example, the DS managing unit 18 may determine
whether the software update is optional, recommended or
required. For example, the system elements may have a cur-
rent version, not utilizing the applicable software, etc. When
the DS managing unit 18 determines that the system elements
do not currently require the software update in step 508, the
process continues back to step 502.

When the DS managing unit 18 determines that the system
elements do currently require the software update in step 508,
the DS managing unit identifies a system element to update in
step 510 based on one or more factors. For example, the DS
managing unit 18 may determine to install the software
update first when it requires the update. In another example,
a factor includes maintaining availability of at least a thresh-
old number T of a storage set of DS units 36. A storage set is
the plurality of DS units 36 that store pillars for a user vault.
Since the update process may take minutes or even hours, a
limit on the number of DS units 36 that are unavailable due to
a software update process may still enable a data object to be
retrieved that is stored in the storage set. For example, at least
a threshold number T of DS units 36 in a storage set need to
be available to retrieve a data object. In another example, the
DS managing unit 18 determines that at least a threshold
number T plus a safety factor (e.g., one or two) of DS units 36
are available to enable the retrieval of data objects. In other
words, the DS managing unit 18 will only update a number of
DS units in the same storage set equal to [width n number of
pillars—read threshold number T-safety factor]. For example,
the DS managing unit 18 may concurrently update 4 DS units
when n=16, read threshold T=10, and the safety factor=2.

The DS managing unit sends an activate process update
client (PUC) message to the identified system element to
initiate the software update process for that system element in
step 512. If additional system elements require the software
update, the process continues to step 510 to identify a next
system element to update.

FIG. 18 is a logic flow diagram of an embodiment of a
method 520 for updating software operating or stored on a
system element of the distributed storage network. In an
embodiment, a system element installs a software update. The
system element may have previously installed a process
update client program which may be utilized to install and
activate the software update. In step 522, the system element
determines whether it has received an activate process update
client (PUC) message where the determination is based on
comparing incoming commands from the network to that of
the PUC command. When the system element determines that
it has not received an activate process update client (PUC)
message in step 524, the process continues to step 522 to
continue to scan for a PUC command. When the system
element has received a PUC command, the system element
activates the PUC and changes its status to unavailable in step
526. The system element may complete critical steps in
progress prior to changing the status and stop accepting new
tasks.

The system element may suspend active processes in step
528 and save next steps in such suspended processes to
execute later. The system element determines a location of the

20

25

30

35

40

45

20

software update based on a local registry that may contain the
network uniform resource identifier (URI) of the software
repository and/or the URI of the DS managing unit 18 or other
location. The system element accesses the URI and down-
loads the software update in step 530. The system element
installs the software update in step 532. The software update
should be backwards compatible with previous software ver-
sions to enable interactions with other system elements that
have not installed the software update. The system element
may activate one or more software installation and activation
scripts included with the software update to perform an ini-
tialization in step 534. When complete, the system element
changes its status from unavailable to available, and it may
complete earlier suspended tasks.

As may be used herein, the term(s) “coupled to” and/or
“coupling” and/or includes direct coupling between items
and/or indirect coupling between items via an intervening
item (e.g., an item includes, but is not limited to, a component,
an element, a circuit, and/or a module). As may further be
used herein, inferred coupling (i.e., where one element is
coupled to another element by inference) includes direct and
indirect coupling between two items in the same manner as
“coupled to”. As may even further be used herein, the term
“operable to” indicates that an item includes one or more of
power connections, input(s), output(s), etc., to perform one or
more its corresponding functions and may further include
inferred coupling to one or more other items. As may still
further be used herein, the term “associated with”, includes
direct and/or indirect coupling of separate items and/or one
item being embedded within another item.

The present invention has also been described above with
the aid of method steps illustrating the performance of speci-
fied functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention.

The present invention has been described above with the
aid of functional building blocks illustrating the performance
of certain significant functions. The boundaries of these func-
tional building blocks have been arbitrarily defined for con-
venience of description. Alternate boundaries could be
defined as long as the certain significant functions are appro-
priately performed. Similarly, flow diagram blocks may also
have been arbitrarily defined herein to illustrate certain sig-
nificant functionality. To the extent used, the flow diagram
block boundaries and sequence could have been defined oth-
erwise and still perform the certain significant functionality.
Such alternate definitions of both functional building blocks
and flow diagram blocks and sequences are thus within the
scope and spirit of the claimed invention. One of average skill
in the art will also recognize that the functional building
blocks, and other illustrative blocks, modules and compo-
nents herein, can be implemented as illustrated or by discrete
components, application specific integrated circuits, proces-
sors executing appropriate software and the like or any com-
bination thereof.

What is claimed is:

1. A dispersed storage managing unit for use within a
dispersed storage network, comprising:

an interface;

memory; and

US 9,063,658 B2

21

a processing module operably coupled to the memory and
the interface, wherein the processing module is operable
to:
determine that an update is available for a set of storage
units that support a virtual memory vault, wherein the
virtual memory vault is mapped to the set of storage
units, wherein data objects are dispersed storage error
encoded into pluralities of sets of encoded data slices
that are stored in the set of storage units and wherein,
to recover a data object of the data objects, a read
threshold number of encoded data slices from each set
of encoded data slices of a corresponding set of the
plurality of sets of encoded data slices are required;

take a first subset of storage units in the set of storage
units off line to perform the update, wherein a remain-
ing number of storage units of the set of storage units
remain on line such that at least the read threshold
number of encoded data slices are available for each
setof the pluralities of sets of encoded data slices; and

when the update is complete in the first subset of storage
units, bring the first subset of storage units back on
line.

2. The dispersed storage managing unit of claim 1, wherein
the processing module is further operable to:

take a second subset of storage units in the set of storage
units off line to perform the update, the second subset of
storage units including different ones of the storage units
than the first subset of storage units, the second subset of
storage units including a number of storage units less
than or equal to the first subset of storage units; and

when the update is complete in the second subset of storage
units, bring the second subset of storage units back on
line.

3. The dispersed storage managing unit of claim 1, wherein

the update is a software update.

4. The dispersed storage managing unit of claim 3, wherein
the processing module is further operable to:

download the software update via the interface; and

cache the software update in the memory.

5. The dispersed storage managing unit of claim 3, wherein
the processing module is further operable to perform at least
one of:

provide the software update to the first subset of storage
units; and

provide a message that instructs the first subset of storage
units to retrieve the software update from a trusted
source.

6. The dispersed storage managing unit of claim 3, wherein

the processing module is further operable to:

provide the software update to all of the storage units in the
set of storage units prior to taking the first subset of
storage units off line.

7. The dispersed storage managing unit of claim 3, further

comprises:

the memory storing a current software version running on
each of the storage units; and

the processing module is further operable to:
compare an update version of the software update with

the current software version to determine whether to
provide the software update to the set of storage units.

8. The dispersed storage managing unit of claim 1, wherein
the update comprises one or more of:

a new software application;

a new version of an existing software application;

a new version of a portion of an existing software applica-

tion;

adding new physical memory;

10

15

20

35

40

45

55

60

65

22
updating physical memory;
adding a new processing module;
updating a processing module;
updating an interface; and
adding a new interface.
9. The dispersed storage managing unit of claim 1, further
comprises:
a decode threshold number including the read threshold
number and a safety factor;
the read threshold number indicating a minimum number
of storage units in the set of storage units that are needed
to enable retrieval of the data object; and
the safety factor indicating an additional number of storage
units in addition to the minimum number of storage units
that should remain on line during the update;
wherein the remaining number of storage units that remain
on line while the first subset of storage units is updated is
at least equal to the decode threshold number of storage
units.
10. A method for updating a set of storage units within a
dispersed storage network, comprising:
determining, by a processing module, that an update is
available for the set of storage units, the set of storage
units supporting a virtual memory vault, wherein the
virtual memory vault is mapped to the set of storage
units, wherein data objects are dispersed storage error
encoded into pluralities of sets of encoded data slices
that are stored in the set of storage units and wherein, to
recover a data object of the data objects, a read threshold
number of encoded data slices from each set of encoded
data slices of a corresponding set of the plurality of sets
of encoded data slices are required;
taking, by the processing module, a first subset of storage
units in the set of storage units off line to perform the
update, wherein a remaining number of storage units of
the set of storage units remain on line such that at least
the read threshold number of encoded data slices are
available for each set of the pluralities of sets of encoded
data slices; and
when the update is complete in the first subset of storage
units, bringing, by the processing module, the first sub-
set of storage units back on line.
11. The method of claim 10, further comprises:
taking, by the processing module, a second subset of stor-
age units in the set of storage units off line to perform the
update, the second subset of storage units including
different ones of the storage units than the first subset of
storage units, the second subset of storage units includ-
ing a number of storage units less than or equal to the
first subset of storage units; and
when the update is complete in the second subset of storage
units, bringing, by the processing module, the second
subset of storage units back on line.
12. The method of claim 10, wherein the update is a soft-
ware update.
13. The method of claim 12, further comprises:
downloading the software update from the network; and
caching the software update in a memory.
14. The method of claim 12, further comprises at least one
of:
providing, by the processing module, the software update
to the first subset of storage units; and
providing, by the processing module, a message that
instructs the first subset of storage units to retrieve the
software update from a trusted source.

US 9,063,658 B2

23

15. The method of claim 12, further comprising:

providing, by the processing module, the software update

to all ofthe storage units prior to taking the first subset of
storage units off line.

16. The method of claim 12, further comprises:

storing a current software version running on each of the

storage units in a memory; and

comparing, by the processing module, an update version of

the software update with the current software version to
determine whether to provide the software update to the
set of storage units.

17. A non-transitory computer readable storage medium
having accessible therefrom a set of instructions interpretable
by a processing module, the set of instructions being config-
ured to cause the processing module to carry out operations
for:

determining that an update is available for a set of storage

units, the set of storage units supporting a virtual
memory vault, wherein the virtual memory vault is
mapped to the set of storage units, wherein data objects
are dispersed storage error encoded into pluralities of
sets of encoded data slices that are stored in the set of
storage units and wherein, to recover a data object of the
data objects, a read threshold number of encoded data
slices from each set of encoded data slices of a corre-
sponding set of the plurality of sets of encoded data
slices are required;

taking a first subset of storage units in the set of storage

units off line to perform the update, wherein a remaining
number of storage units of the set of storage units remain
on line such that at least the read threshold number of

25

30

24

encoded data slices are available for each set of the
pluralities of sets of encoded data slices; and

when the update is complete in the first subset of storage

units, bringing the first subset of storage units back on
line.
18. The storage medium of claim 17, wherein the set of
instructions further causes the processing module to carry out
operations for:
taking a second subset of storage units in the set of storage
units off line to perform the update, the second subset of
storage units including different ones of the storage units
than the first subset of storage units, the second subset of
storage units including a number of storage units less
than or equal to the first subset of storage units; and

when the update is complete in the second subset of storage
units, bringing the second subset of storage units back on
line.
19. The storage medium of claim 17, wherein the set of
instructions further causes the processing module to carry out
operations for:
downloading the update from a network; and
caching the update in a memory.
20. The storage medium of claim 17, wherein the set of
instructions further causes the processing module to carry out
operations for performing at least one of:
providing the update to the first subset of storage units;
providing a message that instructs the first subset of storage
units to retrieve the update from a trusted source; and

providing the update to all of the storage units in the set of
storage units prior to taking the first subset of storage
units off line.

